What is
 a standard Young tableau?

Ron Adin

Department of Mathematics
Bar-Ilan University

"What is . . .?" Seminar Bar-Ilan University, 10 Kislev 5776

	1	2	4
3	5	7	
6	8		
9			

1	2	4	
	3	5	7
		6	8

Abstract

More than a hundred years ago, Frobenius and Young based the emerging representation theory of the symmetric group on the combinatorial objects now called Standard Young Tableaux (SYT). Many important features of these classical objects have since been discovered, including some surprising interpretations and the celebrated hook length formula for their number.
In recent years, SYT of non-classical shapes have come up in research and were shown to have, in many cases, surprisingly nice enumeration formulas.
The talk will present some gems from the study of SYT over the years, including some exciting recent progress. It is partially based on a survey chapter, joint with Yuval Roichman, in the recent CRC Handbook of Combinatorial Enumeration.

Founders

Founders

A. Young

Founders

A. Young

F. G. Frobenius

Founders

A. Young

F. G. Frobenius

P. A. MacMahon

Classical

Introduction

Consider throwing balls labeled $1,2, \ldots, n$ into a V-shaped bin with perpendicular sides.

Introduction

Consider throwing balls labeled $1,2, \ldots, n$ into a V-shaped bin with perpendicular sides.

Introduction

Consider throwing balls labeled $1,2, \ldots, n$ into a V-shaped bin with perpendicular sides.

Introduction

Consider throwing balls labeled $1,2, \ldots, n$ into a V-shaped bin with perpendicular sides.

Introduction

Consider throwing balls labeled $1,2, \ldots, n$ into a V-shaped bin with perpendicular sides.

Introduction

Consider throwing balls labeled $1,2, \ldots, n$ into a V-shaped bin with perpendicular sides.

Introduction

Consider throwing balls labeled $1,2, \ldots, n$ into a V-shaped bin with perpendicular sides.

Rotate:

Introduction

Consider throwing balls labeled $1,2, \ldots, n$ into a V-shaped bin with perpendicular sides.

Rotate:

Introduction

Consider throwing balls labeled $1,2, \ldots, n$ into a V-shaped bin with perpendicular sides.

Rotate:

Diagrams and Tableaux

Diagrams and Tableaux

Diagrams and Tableaux

Standard Young Tableau (SYT):

$$
T= \in \operatorname{SYT}(4,3,1)
$$

Entries increase along rows and columns

Conventions

1	2
3	5
4	

English

Russian

4	
3	5
1	2

French

Number of SYT

Number of SYT

$$
f^{\lambda}=\# \operatorname{SYT}(\lambda)
$$

Number of SYT

$$
f^{\lambda}=\# \operatorname{SYT}(\lambda)
$$

1	2	3				
4	5		\quad	1	2	4
:---	:---	:---	:---	:---	:---	
3	5		\quad	1	2	5
:---	:---	:---				
3	4					

1	3	4				
2	5		\quad	1	3	5
:---	:---	:---				
2	4					

Number of SYT

$$
f^{\lambda}=\# \operatorname{SYT}(\lambda)
$$

1	2	3				
4	5		\quad	1	2	4
:---	:---	:---	:---	:---	:---	
3	5					
1	2	5				
3	4					

1	3	4				
2	5		\quad	1	3	5
:---	:---	:---				
2	4					

$$
\lambda=(3,2), \quad f^{\lambda}=5
$$

SYT and S_{n} Representations

$S_{n}=$ the symmetric group on n letters

SYT and S_{n} Representations

$S_{n}=$ the symmetric group on n letters

SYT and S_{n} Representations

$S_{n}=$ the symmetric group on n letters

SYT $(\lambda) \longleftrightarrow$ basis of representation space

SYT and S_{n} Representations

$S_{n}=$ the symmetric group on n letters

SYT $(\lambda) \longleftrightarrow$ basis of representation space

$$
f^{\lambda} \quad=\quad \chi^{\lambda}(i d)
$$

SYT and S_{n} Representations

$S_{n}=$ the symmetric group on n letters

Corollary: (regular representation)

$$
\sum_{\lambda \vdash n}\left(f^{\lambda}\right)^{2}=n!
$$

RS(K) Correspondence

[Robinson, Schensted (, Knuth)]

RS(K) Correspondence

[Robinson, Schensted (, Knuth)]

RS(K) Correspondence

[Robinson, Schensted (, Knuth)]
π

permutation \longleftrightarrow| (P, Q) |
| :---: |
| pair of SYT |
| of the same shape |

RS(K) Correspondence

[Robinson, Schensted (, Knuth)]
π

permutation \longleftrightarrow| (P, Q) |
| :---: |
| pair of SYT |
| of the same shape |

4236517 仡	(3	5		,	1	3	3	4		
		6				2	5	5			
						6					

Corollary:

$$
\sum_{\lambda \vdash n}\left(f^{\lambda}\right)^{2}=n!
$$

Interpretation 1: The Young Lattice

A SYT describes a growth process of diagrams.

Interpretation 1: The Young Lattice

A SYT describes a growth process of diagrams. For example,

1	2	5
3	4	

corresponds to the process

Interpretation 1: The Young Lattice

A SYT describes a growth process of diagrams. For example,

1	2	5
3	4	

corresponds to the process

Interpretation 1: The Young Lattice

A SYT describes a growth process of diagrams. For example,

1	2	5
3	4	

corresponds to the process

Interpretation 1: The Young Lattice

A SYT describes a growth process of diagrams. For example,

1	2	5
3	4	

corresponds to the process

Interpretation 1: The Young Lattice

A SYT describes a growth process of diagrams. For example,

1	2	5
3	4	

corresponds to the process

Interpretation 1: The Young Lattice

A SYT describes a growth process of diagrams. For example,

1	2	5
3	4	

corresponds to the process

The Young lattice consists of all partitions (diagrams), of all sizes, ordered by inclusion.

Interpretation 1: The Young Lattice

A SYT describes a growth process of diagrams. For example,

1	2	5
3	4	

corresponds to the process

The Young lattice consists of all partitions (diagrams), of all sizes, ordered by inclusion.

SYT $(\lambda) \longleftrightarrow$ maximal chains in the Young lattice from \emptyset to λ

Interpretation 1: The Young Lattice

A SYT describes a growth process of diagrams. For example,

1	2	5
3	4	

corresponds to the process

The Young lattice consists of all partitions (diagrams), of all sizes, ordered by inclusion.

SYT $(\lambda) \longleftrightarrow$ maximal chains in the Young lattice from \emptyset to λ

The number of such maximal chains is therefore f^{λ}.

Interpretation 2: Lattice Paths

Each SYT of shape $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ corresponds to a lattice path in \mathbb{R}^{t}, from the origin 0 to the point λ, where in each step exactly one of the coordinates changes (by adding 1), while staying within the region

$$
\left\{\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{t} \mid x_{1} \geq \ldots \geq x_{t} \geq 0\right\}
$$

Interpretation 2: Lattice Paths

Each SYT of shape $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ corresponds to a lattice path in \mathbb{R}^{t}, from the origin 0 to the point λ, where in each step exactly one of the coordinates changes (by adding 1), while staying within the region

$$
\left\{\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{t} \mid x_{1} \geq \ldots \geq x_{t} \geq 0\right\}
$$

Interpretation 2: Lattice Paths

Each SYT of shape $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ corresponds to a lattice path in \mathbb{R}^{t}, from the origin 0 to the point λ, where in each step exactly one of the coordinates changes (by adding 1), while staying within the region

$$
\left\{\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{t} \mid x_{1} \geq \ldots \geq x_{t} \geq 0\right\}
$$

Interpretation 2: Lattice Paths

Each SYT of shape $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ corresponds to a lattice path in \mathbb{R}^{t}, from the origin 0 to the point λ, where in each step exactly one of the coordinates changes (by adding 1), while staying within the region

$$
\left\{\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{t} \mid x_{1} \geq \ldots \geq x_{t} \geq 0\right\}
$$

\square

Interpretation 2: Lattice Paths

Each SYT of shape $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ corresponds to a lattice path in \mathbb{R}^{t}, from the origin 0 to the point λ, where in each step exactly one of the coordinates changes (by adding 1), while staying within the region

$$
\left\{\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{t} \mid x_{1} \geq \ldots \geq x_{t} \geq 0\right\}
$$

Interpretation 2: Lattice Paths

Each SYT of shape $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ corresponds to a lattice path in \mathbb{R}^{t}, from the origin 0 to the point λ, where in each step exactly one of the coordinates changes (by adding 1), while staying within the region

$$
\left\{\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{t} \mid x_{1} \geq \ldots \geq x_{t} \geq 0\right\}
$$

1	2
3	4

Interpretation 2: Lattice Paths

Each SYT of shape $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ corresponds to a lattice path in \mathbb{R}^{t}, from the origin 0 to the point λ, where in each step exactly one of the coordinates changes (by adding 1), while staying within the region

$$
\left\{\left(x_{1}, \ldots, x_{t}\right) \in \mathbb{R}^{t} \mid x_{1} \geq \ldots \geq x_{t} \geq 0\right\}
$$

Interpretation 3: Order Polytope

The order polytope corresponding to a diagram D is
$P(D):=\left\{f: D \rightarrow[0,1] \mid c \leq_{D} c^{\prime} \Longrightarrow f(c) \leq f\left(c^{\prime}\right)\left(\forall c, c^{\prime} \in D\right)\right\}$,
where \leq_{D} is the natural partial order between the cells of D. It is a closed convex subset of the unit cube $[0,1]^{D}$.

Interpretation 3: Order Polytope

The order polytope corresponding to a diagram D is
$P(D):=\left\{f: D \rightarrow[0,1] \mid c \leq_{D} c^{\prime} \Longrightarrow f(c) \leq f\left(c^{\prime}\right)\left(\forall c, c^{\prime} \in D\right)\right\}$,
where \leq_{D} is the natural partial order between the cells of D. It is a closed convex subset of the unit cube $[0,1]^{D}$.

a	b	c
d	e	

Interpretation 3: Order Polytope

The order polytope corresponding to a diagram D is
$P(D):=\left\{f: D \rightarrow[0,1] \mid c \leq_{D} c^{\prime} \Longrightarrow f(c) \leq f\left(c^{\prime}\right)\left(\forall c, c^{\prime} \in D\right)\right\}$,
where \leq_{D} is the natural partial order between the cells of D. It is a closed convex subset of the unit cube $[0,1]^{D}$.

$$
\begin{gathered}
f:\{a, b, c, d, e\} \rightarrow[0,1] \\
f(a) \leq f(b) \leq f(c) \\
f(d) \leq f(e) \\
f(a) \leq f(d) \\
f(b) \leq f(e)
\end{gathered}
$$

Interpretation 3: Order Polytope

The order polytope corresponding to a diagram D is
$P(D):=\left\{f: D \rightarrow[0,1] \mid c \leq_{D} c^{\prime} \Longrightarrow f(c) \leq f\left(c^{\prime}\right)\left(\forall c, c^{\prime} \in D\right)\right\}$,
where \leq_{D} is the natural partial order between the cells of D. It is a closed convex subset of the unit cube $[0,1]^{D}$.

$$
\begin{gathered}
f:\{a, b, c, d, e\} \rightarrow[0,1] \\
f(a) \leq f(b) \leq f(c) \\
f(d) \leq f(e) \\
f(a) \leq f(d) \\
f(b) \leq f(e)
\end{gathered}
$$

Observation:

$$
\operatorname{vol} P(D)=\frac{f^{D}}{|D|!}
$$

Interpretation 4: Reduced Words (1)

The following theorem was conjectured and first proved by Stanley using symmetric functions. Edelman and Greene later provided a bijective proof.

Theorem: [Stanley 1984, Edelman-Green 1987]
The number of reduced words (in adjacent transpositions) of the longest permutation $w_{0}:=[n, n-1, \ldots, 1]$ in S_{n} is equal to the number of SYT of staircase shape $\delta_{n-1}=(n-1, n-2, \ldots, 1)$.

Interpretation 4: Reduced Words (2)

An analogue for type B (signed permutations) was conjectured by Stanley and proved by Haiman.

Theorem: [Haiman 1989]
The number of reduced words (in the alphabet of Coxeter generators) of the longest element $w_{0}:=[-1,-2, \ldots,-n]$ in B_{n} is equal to the number of SYT of square $n \times n$ shape.

Formulas: Product and Determinant

For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$, let

$$
\ell_{i}:=\lambda_{i}+t-i \quad(1 \leq i \leq t)
$$

Formulas: Product and Determinant

For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$, let

$$
\ell_{i}:=\lambda_{i}+t-i \quad(1 \leq i \leq t)
$$

Theorem: [Frobenius 1900, MacMahon 1909, Young 1927]

$$
f^{\lambda}=\frac{|\lambda|!}{\prod_{i=1}^{t} \ell_{i}!} \cdot \prod_{(i, j): i<j}\left(\ell_{i}-\ell_{j}\right)
$$

Formulas: Product and Determinant

For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$, let

$$
\ell_{i}:=\lambda_{i}+t-i \quad(1 \leq i \leq t)
$$

Theorem: [Frobenius 1900, MacMahon 1909, Young 1927]

$$
f^{\lambda}=\frac{|\lambda|!}{\prod_{i=1}^{t} \ell_{i}!} \cdot \prod_{(i, j): i<j}\left(\ell_{i}-\ell_{j}\right)
$$

Theorem: (Determinantal Formula)

$$
f^{\lambda}=|\lambda|!\cdot \operatorname{det}\left[\frac{1}{\left(\lambda_{i}-i+j\right)!}\right]_{i, j=1}^{t},
$$

using the convention $1 / k!:=0$ for negative integers k.

Hook Length Formula

The hook length of a cell $c=(i, j)$ in a diagram of shape λ is

$$
h_{c}:=\lambda_{i}+\lambda_{j}^{\prime}-i-j+1 .
$$

Hook Length Formula

The hook length of a cell $c=(i, j)$ in a diagram of shape λ is

$$
h_{c}:=\lambda_{i}+\lambda_{j}^{\prime}-i-j+1
$$

6	4	3	1
4	2	1	
1			

hook of $c=(1,2) \quad$ hook lengths

Hook Length Formula

The hook length of a cell $c=(i, j)$ in a diagram of shape λ is

$$
h_{c}:=\lambda_{i}+\lambda_{j}^{\prime}-i-j+1
$$

6	4	3	1
4	2	1	
1			

hook of $c=(1,2) \quad$ hook lengths
Theorem: [Frame-Robinson-Thrall, 1954]

$$
f^{\lambda}=\frac{|\lambda|!}{\prod_{c \in[\lambda]} h_{c}} .
$$

Still Classical

Skew Shapes

If λ and μ are partitions such that $[\mu] \subseteq[\lambda]$, namely $\mu_{i} \leq \lambda_{i}(\forall i)$, then the skew diagram of shape λ / μ is the set difference $[\lambda / \mu]:=[\lambda] \backslash[\mu]$ of the two ordinary shapes.

$$
=\quad[(6,4,3,1) /(4,2,1)]
$$

$$
\in \operatorname{SYT}((6,4,3,1) /(4,2,1))
$$

Skew Shapes and Representations

$$
\begin{array}{ccc}
\lambda / \mu & \longrightarrow & \chi^{\lambda / \mu} \\
\text { skew shape of size } n & & \begin{array}{c}
\text { (reducible) character of } S_{n}
\end{array} \\
\operatorname{SYT}(\lambda / \mu) & \longleftrightarrow & \text { basis of representation space } \\
f^{\lambda / \mu} & = & \chi^{\lambda / \mu}(i d)
\end{array}
$$

Skew Shapes and Representations

$$
\begin{array}{ccc}
\begin{array}{c}
\lambda / \mu \\
\text { r shape of size } n
\end{array} & \longrightarrow & \begin{array}{c}
\chi^{\lambda / \mu} \\
\text { (reducible) character of } S_{n}
\end{array} \\
\operatorname{SYT}(\lambda / \mu) & \longleftrightarrow & \text { basis of representation space } \\
f^{\lambda / \mu} & = & \chi^{\lambda / \mu}(i d)
\end{array}
$$

For example,

the regular character

$$
\longleftrightarrow
$$

$$
\chi^{\mathrm{reg}}(g)=|G| \delta_{g, i d}
$$

$$
\left(G=S_{4}\right)
$$

Skew Determinantal Formula

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ be partitions such that $\mu_{i} \leq \lambda_{i}(\forall i)$.

Theorem [Aitken 1943, Feit 1953]

$$
f^{\lambda / \mu}=|\lambda / \mu|!\cdot \operatorname{det}\left[\frac{1}{\left(\lambda_{i}-\mu_{j}-i+j\right)!}\right]_{i, j=1}^{t}
$$

with the conventions $\mu_{j}:=0$ for $j>s$ and $1 / k!:=0$ for negative integers k.

Unfortunately, no product or hook length formula is known for general skew shapes.

Shifted Shapes

A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ is called strict if its parts λ_{i} are strictly decreasing: $\lambda_{1}>\ldots>\lambda_{t}>0$.

Shifted Shapes

A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ is called strict if its parts λ_{i} are strictly decreasing: $\lambda_{1}>\ldots>\lambda_{t}>0$.
The shifted diagram of shape λ is the set

$$
D=\left[\lambda^{*}\right]:=\left\{(i, j) \mid 1 \leq i \leq t, i \leq j \leq \lambda_{i}+i-1\right\}
$$

Note that $\left(\lambda_{i}+i-1\right)_{i=1}^{t}$ are weakly decreasing.

$T=$| 1 | 2 | 4 | 6 |
| :--- | :--- | :--- | :--- |
| | 3 | 5 | 8 |
| | 7 | | |
| | | | |$\in \operatorname{SYT}\left((4,3,1)^{*}\right)$.

Shifted Shapes and Representations

Shifted Shapes and Representations

Strict partitions λ of n essentially correspond to irreducible projective characters of S_{n}.

Shifted Shapes and Representations

Strict partitions λ of n essentially correspond to irreducible projective characters of S_{n}.

$$
g^{\lambda}:=\# \operatorname{SYT}\left(\lambda^{*}\right)
$$

Corollary:

$$
\sum_{\lambda \models n} 2^{n-t}\left(g^{\lambda}\right)^{2}=n!
$$

Shifted Formulas

Like ordinary shapes, the number g^{λ} of SYT of shifted shape λ has three types of formulas - product, determinantal and hook length.

Theorem [Schur 1911, Thrall 1952]

$$
g^{\lambda}=\frac{|\lambda|!}{\prod_{i=1}^{t} \lambda_{i}!} \cdot \prod_{(i, j): i<j} \frac{\lambda_{i}-\lambda_{j}}{\lambda_{i}+\lambda_{j}}
$$

Theorem

$$
g^{\lambda}=\frac{|\lambda|!}{\prod_{(i, j): i<j}\left(\lambda_{i}+\lambda_{j}\right)} \cdot \operatorname{det}\left[\frac{1}{\left(\lambda_{i}-t+j\right)!}\right]_{i, j=1}^{t}
$$

Theorem

$$
g^{\lambda}=\frac{|\lambda|!}{\prod_{c \in\left[\lambda^{*}\right]} h_{c}^{*}}
$$

Non-Classical

Truncated Shapes

Truncated Shapes

Truncated Shapes

	1	2	4	
3	5	7		
6	8			
9				
classical skew				

1	2	4	
	3	5	7
		6	8
			9

[^0]
Truncated Shapes

	1	2	4
3	5	7	
6	8		
9			
classical skew			

1	2	4	
	3	5	7
		6	8

$\# \mathrm{SYT}=768 \quad \# \mathrm{SYT}=4$

Truncated Shifted Staircase

The number of SYT whose shape is a shifted staircase with a truncated corner came up in a combinatorial setting, counting the number of geodesics (shortest paths) between antipodes in a certain flip graph (of triangulations) [AFR 2010].

Truncated Shifted Staircase

The number of SYT whose shape is a shifted staircase with a truncated corner came up in a combinatorial setting, counting the number of geodesics (shortest paths) between antipodes in a certain flip graph (of triangulations) [AFR 2010].

Computations showed that \#SYT is unusually smooth.

Truncated Shifted Staircase

The number of SYT whose shape is a shifted staircase with a truncated corner came up in a combinatorial setting, counting the number of geodesics (shortest paths) between antipodes in a certain flip graph (of triangulations) [AFR 2010].

Computations showed that \#SYT is unusually smooth.

$$
\begin{array}{ccc}
\lambda= & (9,9,8,7,6,5,4,3,2,1) \\
N= & 54(\text { size })
\end{array}
$$

Truncated Shifted Staircase

The number of SYT whose shape is a shifted staircase with a truncated corner came up in a combinatorial setting, counting the number of geodesics (shortest paths) between antipodes in a certain flip graph (of triangulations) [AFR 2010].

Computations showed that \#SYT is unusually smooth.

$$
\begin{array}{ccc}
\lambda= & (9,9,8,7,6,5,4,3,2,1) \\
N= & 54 \text { (size) } \\
g^{\lambda}= & 116528733315142075200
\end{array}
$$

Truncated Shifted Staircase

The number of SYT whose shape is a shifted staircase with a truncated corner came up in a combinatorial setting, counting the number of geodesics (shortest paths) between antipodes in a certain flip graph (of triangulations) [AFR 2010].

Computations showed that \#SYT is unusually smooth.

$$
\begin{array}{ccc}
\lambda & = & (9,9,8,7,6,5,4,3,2,1) \\
N & = & 54 \text { (size) } \\
g^{\lambda} & = & 116528733315142075200 \\
& = & 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13^{2} \cdot 17^{2} \cdot 19 \cdot 23 \cdot 37 \cdot 41 \cdot 43 \cdot 47 \cdot 53
\end{array}
$$

The largest prime factor is $<N$!!!

Shifted Staircase (Classical)

Let $\delta_{n}:=(n, n-1, \ldots, 1)$, a shifted staircase shape.

Shifted Staircase (Classical)

Let $\delta_{n}:=(n, n-1, \ldots, 1)$, a shifted staircase shape.

Corollary: (of Schur's product formula for shifted shapes)

$$
g^{\delta_{n}}=N!\cdot \prod_{i=0}^{n-1} \frac{i!}{(2 i+1)!},
$$

where $N:=\left|\delta_{n}\right|=\binom{n+1}{2}$.

Truncated Shifted Staircase

The first example of a truncated shape:

Truncated Shifted Staircase

The first example of a truncated shape:

Theorem: [A-King-Roichman '11, Panova '12] The number of SYT of shape $\delta_{n} \backslash(1)$ is equal to

$$
g^{\delta_{n}} \frac{C_{n} C_{n-2}}{2 C_{2 n-3}}
$$

where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is the n-th Catalan number.

Truncated Shifted Staircase

More generally, truncating a square from a shifted staircase shape:

Theorem: [AKR] The number of SYT of truncated shifted staircase shape $\delta_{m+2 k} \backslash\left((k-1)^{k-1}\right)$ is

$$
g^{(m+k+1, \ldots, m+3, m+1, \ldots, 1)} g^{(m+k+1, \ldots, m+3, m+1)} \cdot \frac{N!M!}{(N-M-1)!(2 M+1)!},
$$

where $N=\binom{m+2 k+1}{2}-(k-1)^{2}$ is the size of the shape and $M=k(2 m+k+3) / 2-1$.
Similarly for truncating "almost squares" $\left(k^{k-1}, k-1\right)$.

Rectangle (Classical)

Observation:
The number of SYT of rectangular shape $\left(n^{m}\right)$ is

$$
f^{\left(n^{m}\right)}=(m n)!\cdot \frac{F_{m} F_{n}}{F_{m+n}},
$$

where

$$
F_{m}:=\prod_{i=0}^{m-1} i!
$$

Truncated Rectangle

Truncate a rectangle by a (shifted) staircase.

Theorem: [Panova]
Let $m \geq n \geq k$ be positive integers. The number of SYT of truncated shape $\left(n^{m}\right) \backslash \delta_{k}$ is

$$
\binom{N}{m(n-k-1)} f^{(n-k-1)^{m}} g^{(m, m-1, \ldots, m-k)} \frac{E(k+1, m, n-k-1)}{E(k+1, m, 0)}
$$

where $N=m n-\binom{k+1}{2}$ is the size of the shape and $E(r, p, s)=\ldots$.

Truncated Rectangle

Truncate a square from the NE corner of a rectangle:

Theorem: [AKR]
The number of SYT of truncated rectangular shape $\left((n+k)^{m+k}\right) \backslash\left(k^{k}\right)$ and size N is

$$
\frac{N!(m k+m-1)!(n k+n-1)!(m+n)!}{(m k+n k+m+n)!} \cdot \frac{F_{m-1} F_{n-1} F_{k}}{F_{m+n+k}} .
$$

Similar results were obtained for truncation by almost squares.

Truncated Rectangle

The following formula, for a slightly truncated square, was conjectured by AKR and proved by Sun.

Theorem: [Sun '15]
For $n \geq 2$

$$
f^{\left(n^{n}\right) \backslash(2)}=\frac{\left(n^{2}-2\right)!(3 n-4)!^{2} \cdot 6}{(6 n-8)!(2 n-2)!(n-2)!^{2}} \cdot \frac{F_{n-2}^{2}}{F_{2 n-4}} .
$$

Truncated Rectangle

The following formula, for a slightly truncated square, was conjectured by AKR and proved by Sun.

Theorem: [Sun '15]
For $n \geq 2$

$$
f^{\left(n^{n}\right) \backslash(2)}=\frac{\left(n^{2}-2\right)!(3 n-4)!^{2} \cdot 6}{(6 n-8)!(2 n-2)!(n-2)!^{2}} \cdot \frac{F_{n-2}^{2}}{F_{2 n-4}} .
$$

The corresponding numbers for a truncated rectangle are not smooth!

Truncated Rectangle

The following formula, for a slightly truncated square, was conjectured by AKR and proved by Sun.

Theorem: [Sun '15]
For $n \geq 2$

$$
f^{\left(n^{n}\right) \backslash(2)}=\frac{\left(n^{2}-2\right)!(3 n-4)!^{2} \cdot 6}{(6 n-8)!(2 n-2)!(n-2)!^{2}} \cdot \frac{F_{n-2}^{2}}{F_{2 n-4}}
$$

The corresponding numbers for a truncated rectangle are not smooth!

Theorem: [Snow]
For $n \geq 2$ and $k \geq 0$

$$
f^{\left(n^{k+1}\right) \backslash(n-2)}=\frac{(k n-k)!(k n+n)!}{(k n+n-k)!} \cdot \frac{F_{k} F_{n}}{F_{n+k}}
$$

Proof Ideas: Sun

Proof Ideas: Sun

A rectangle truncated by a shifted staircase:

Proof Ideas: Sun

A rectangle truncated by a shifted staircase:

First step:
$\# S Y T=N!$ times the volume of the order polytope

Interpretation 3: Order Polytope

The order polytope corresponding to a diagram D is
$P(D):=\left\{f: D \rightarrow[0,1] \mid c \leq_{D} c^{\prime} \Longrightarrow f(c) \leq f\left(c^{\prime}\right)\left(\forall c, c^{\prime} \in D\right)\right\}$,
where \leq_{D} is the natural partial order between the cells of D. It is a closed convex subset of the unit cube $[0,1]^{D}$.

$$
\begin{gathered}
f:\{a, b, c, d, e\} \rightarrow[0,1] \\
f(a) \leq f(b) \leq f(c) \\
f(d) \leq f(e) \\
f(a) \leq f(d) \\
f(b) \leq f(e)
\end{gathered}
$$

Observation:

$$
\operatorname{vol} P(D)=\frac{f^{D}}{|D|!}
$$

Proof Ideas: Sun

- $\# S Y T=N!$ times the volume of the order polytope;

Proof Ideas: Sun

- $\# S Y T=N$! times the volume of the order polytope;
- the volume is computed by an iterated integral,

Proof Ideas: Sun

- $\# S Y T=N$! times the volume of the order polytope;
- the volume is computed by an iterated integral,
- equal to the integral of a (nearly Vandermonde) determinant,

Proof Ideas: Sun

- $\# S Y T=N$! times the volume of the order polytope;
- the volume is computed by an iterated integral,
- equal to the integral of a (nearly Vandermonde) determinant,
- equal to $F_{n-k} F_{m-k} / F_{n+m-k}$ times

$$
\int_{0 \leq t_{1} \leq \ldots \leq t_{k} \leq 1} \cdots \prod_{i=1}^{k} t_{i}^{n-k}\left(1-t_{i}\right)^{m-k} \prod_{i<j}\left(t_{j}-t_{i}\right) d t_{1} \cdots d t_{k}
$$

Proof Ideas: Sun

- $\# S Y T=N$! times the volume of the order polytope;
- the volume is computed by an iterated integral,
- equal to the integral of a (nearly Vandermonde) determinant,
- equal to $F_{n-k} F_{m-k} / F_{n+m-k}$ times

$$
\int_{0 \leq t_{1} \leq \ldots \leq t_{k} \leq 1} \cdots \prod_{i=1}^{k} t_{i}^{n-k}\left(1-t_{i}\right)^{m-k} \prod_{i<j}\left(t_{j}-t_{i}\right) d t_{1} \cdots d t_{k}
$$

- evaluated using Selberg's integral formula as

Proof Ideas: Sun

- $\# S Y T=N!$ times the volume of the order polytope;
- the volume is computed by an iterated integral,
- equal to the integral of a (nearly Vandermonde) determinant,
- equal to $F_{n-k} F_{m-k} / F_{n+m-k}$ times

$$
\int_{0 \leq t_{1} \leq \ldots \leq t_{k} \leq 1} \cdots \prod_{i=1}^{k} t_{i}^{n-k}\left(1-t_{i}\right)^{m-k} \prod_{i<j}\left(t_{j}-t_{i}\right) d t_{1} \cdots d t_{k}
$$

- evaluated using Selberg's integral formula as

$$
\prod_{j=0}^{k-1} \frac{\Gamma(n-k+1+j / 2) \Gamma(m-k+1+j / 2) \Gamma((j+1) / 2)}{\Gamma(n+m-2 k+2+(k-1+j) / 2)}
$$

Shifted Strip

Shifted Strip

Theorem: [Sun]
The number of SYT of truncated shifted shape with n rows and 4 cells in each row is the $(2 n-1)$-st Pell number

$$
\frac{1}{2 \sqrt{2}}\left((1+\sqrt{2})^{2 n-1}-(1-\sqrt{2})^{2 n-1}\right)
$$

There are extensions by Hason.

Open Problems

- Which non-classical shapes have nice/product formulas?
- A modified hook length formula?
- A representation theoretical interpretation?

Thank You!

[^0]: non-classical shifted, truncated

