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Classical Interpretations Formulas Still Classical Non-Classical

Abstract

More than a hundred years ago, Frobenius and Young based the
emerging representation theory of the symmetric group on the
combinatorial objects now called Standard Young Tableaux (SYT).
Many important features of these classical objects have since been
discovered, including some surprising interpretations and the
celebrated hook length formula for their number.
In recent years, SYT of non-classical shapes have come up in
research and were shown to have, in many cases, surprisingly nice
enumeration formulas.
The talk will present some gems from the study of SYT over the
years, including some exciting recent progress. It is partially based
on a survey chapter, joint with Yuval Roichman, in the recent CRC
Handbook of Combinatorial Enumeration.
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Introduction

Consider throwing balls labeled 1, 2, . . . , n into a V-shaped bin with
perpendicular sides.
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Diagrams and Tableaux

partition ←→ diagram/shape

λ = (4, 3, 1) ` 8 [λ] =

Standard Young Tableau (SYT):

T =

1 2 5 8

3 4 6

7

∈ SYT(4, 3, 1).

Entries increase along rows and columns
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f λ = # SYT(λ)
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SYT and Sn Representations

Sn = the symmetric group on n letters

λ ←→ χλ

partition of n irreducible character of Sn

SYT(λ) ←→ basis of representation space

f λ = χλ(id)

Corollary: (regular representation)∑
λ`n

(f λ)2 = n!
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RS(K) Correspondence

[Robinson, Schensted (, Knuth)]

π ←→ (P,Q)
permutation pair of SYT

of the same shape

4236517 ←→

 1 3 5 7

2 6

4

,

1 3 4 7

2 5

6


Corollary: ∑

λ`n
(f λ)2 = n!
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Interpretation 1: The Young Lattice
A SYT describes a growth process of diagrams.

For example,

1 2 5

3 4

corresponds to the process

∅ → → → → →

The Young lattice consists of all partitions (diagrams), of all sizes,
ordered by inclusion.

SYT(λ) ←→ maximal chains in the Young lattice
from ∅ to λ

The number of such maximal chains is therefore f λ.
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Interpretation 2: Lattice Paths

Each SYT of shape λ = (λ1, . . . , λt) corresponds to a lattice path
in Rt , from the origin 0 to the point λ, where in each step exactly
one of the coordinates changes (by adding 1), while staying within
the region

{(x1, . . . , xt) ∈ Rt | x1 ≥ . . . ≥ xt ≥ 0}.

x2

x1

λ = (3, 2) 1 2

3 4

5
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Interpretation 3: Order Polytope

The order polytope corresponding to a diagram D is

P(D) := {f : D → [0, 1] | c ≤D c ′ =⇒ f (c) ≤ f (c ′) (∀c , c ′ ∈ D)},

where ≤D is the natural partial order between the cells of D. It is
a closed convex subset of the unit cube [0, 1]D .

a b c

d e

f : {a, b, c , d , e} → [0, 1]
f (a) ≤ f (b) ≤ f (c)

f (d) ≤ f (e)
f (a) ≤ f (d)
f (b) ≤ f (e)

Observation:

volP(D) =
f D

|D|!
.
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Interpretation 4: Reduced Words (1)

The following theorem was conjectured and first proved by Stanley
using symmetric functions. Edelman and Greene later provided a
bijective proof.

Theorem: [Stanley 1984, Edelman-Green 1987]
The number of reduced words (in adjacent transpositions) of the
longest permutation w0 := [n, n − 1, ..., 1] in Sn is equal to the
number of SYT of staircase shape δn−1 = (n − 1, n − 2, ..., 1).
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Interpretation 4: Reduced Words (2)

An analogue for type B (signed permutations) was conjectured by
Stanley and proved by Haiman.

Theorem: [Haiman 1989]
The number of reduced words (in the alphabet of Coxeter
generators) of the longest element w0 := [−1,−2, ...,−n] in Bn is
equal to the number of SYT of square n × n shape.
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Formulas: Product and Determinant

For a partition λ = (λ1, . . . , λt), let

`i := λi + t − i (1 ≤ i ≤ t).

Theorem: [Frobenius 1900, MacMahon 1909, Young 1927]

f λ =
|λ|!∏t
i=1 `i !

·
∏

(i ,j): i<j

(`i − `j).

Theorem: (Determinantal Formula)

f λ = |λ|! · det

[
1

(λi − i + j)!

]t
i ,j=1

,

using the convention 1/k! := 0 for negative integers k .
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Hook Length Formula

The hook length of a cell c = (i , j) in a diagram of shape λ is

hc := λi + λ′j − i − j + 1.

• • •
•

6 4 3 1

4 2 1

1

hook of c = (1, 2) hook lengths

Theorem: [Frame-Robinson-Thrall, 1954]

f λ =
|λ|!∏
c∈[λ] hc

.



Classical Interpretations Formulas Still Classical Non-Classical

Hook Length Formula

The hook length of a cell c = (i , j) in a diagram of shape λ is

hc := λi + λ′j − i − j + 1.

• • •
•

6 4 3 1

4 2 1

1

hook of c = (1, 2) hook lengths

Theorem: [Frame-Robinson-Thrall, 1954]

f λ =
|λ|!∏
c∈[λ] hc

.



Classical Interpretations Formulas Still Classical Non-Classical

Hook Length Formula

The hook length of a cell c = (i , j) in a diagram of shape λ is

hc := λi + λ′j − i − j + 1.

• • •
•

6 4 3 1

4 2 1

1

hook of c = (1, 2) hook lengths

Theorem: [Frame-Robinson-Thrall, 1954]

f λ =
|λ|!∏
c∈[λ] hc

.



Classical Interpretations Formulas Still Classical Non-Classical

Still Classical



Classical Interpretations Formulas Still Classical Non-Classical

Skew Shapes

If λ and µ are partitions such that [µ] ⊆ [λ], namely µi ≤ λi (∀i),
then the skew diagram of shape λ/µ is the set difference
[λ/µ] := [λ] \ [µ] of the two ordinary shapes.

= [(6, 4, 3, 1)/(4, 2, 1)]

1 4

3 7

5 6

2

∈ SYT((6, 4, 3, 1)/(4, 2, 1)).
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Skew Shapes and Representations

λ/µ −→ χλ/µ

skew shape of size n (reducible) character of Sn

SYT(λ/µ) ←→ basis of representation space

f λ/µ = χλ/µ(id)

For example,

←→
the regular character
χreg(g) = |G |δg ,id

(G = S4)
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Skew Determinantal Formula

Let λ = (λ1, . . . , λt) and µ = (µ1, . . . , µs) be partitions such that
µi ≤ λi (∀i).

Theorem [Aitken 1943, Feit 1953]

f λ/µ = |λ/µ|! · det

[
1

(λi − µj − i + j)!

]t
i ,j=1

,

with the conventions µj := 0 for j > s and 1/k! := 0 for negative
integers k .

Unfortunately, no product or hook length formula is known for
general skew shapes.
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Shifted Shapes

A partition λ = (λ1, . . . , λt) is called strict if its parts λi are
strictly decreasing: λ1 > . . . > λt > 0.

The shifted diagram of shape λ is the set

D = [λ∗] := {(i , j) | 1 ≤ i ≤ t, i ≤ j ≤ λi + i − 1}.

Note that (λi + i − 1)ti=1 are weakly decreasing.

λ = (4, 3, 1) =⇒ [λ∗] =

T =

1 2 4 6

3 5 8

7

∈ SYT((4, 3, 1)∗).
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1 2 4 6

3 5 8

7

∈ SYT((4, 3, 1)∗).
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Shifted Shapes and Representations

Strict partitions λ of n essentially correspond to irreducible
projective characters of Sn.

gλ := # SYT(λ∗)

Corollary: ∑
λ|=n

2n−t(gλ)2 = n!



Classical Interpretations Formulas Still Classical Non-Classical

Shifted Shapes and Representations

Strict partitions λ of n essentially correspond to irreducible
projective characters of Sn.

gλ := # SYT(λ∗)

Corollary: ∑
λ|=n

2n−t(gλ)2 = n!



Classical Interpretations Formulas Still Classical Non-Classical

Shifted Shapes and Representations

Strict partitions λ of n essentially correspond to irreducible
projective characters of Sn.

gλ := # SYT(λ∗)

Corollary: ∑
λ|=n

2n−t(gλ)2 = n!



Classical Interpretations Formulas Still Classical Non-Classical

Shifted Formulas

Like ordinary shapes, the number gλ of SYT of shifted shape λ has
three types of formulas – product, determinantal and hook length.

Theorem [Schur 1911, Thrall 1952]

gλ =
|λ|!∏t
i=1 λi !

·
∏

(i ,j): i<j

λi − λj
λi + λj

Theorem

gλ =
|λ|!∏

(i ,j): i<j(λi + λj)
· det

[
1

(λi − t + j)!

]t
i ,j=1

Theorem

gλ =
|λ|!∏

c∈[λ∗] h
∗
c
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Non-Classical
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Truncated Shapes

1 2 4

3 5 7

6 8

9

1 2 4

3 5 7

6 8

9

classical non-classical
skew shifted, truncated

# SYT = 768 # SYT = 4
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Truncated Shifted Staircase

The number of SYT whose shape is a shifted staircase with a
truncated corner came up in a combinatorial setting, counting the
number of geodesics (shortest paths) between antipodes in a
certain flip graph (of triangulations) [AFR 2010].

Computations showed that # SYT is unusually smooth.

λ = (9, 9, 8, 7, 6, 5, 4, 3, 2, 1)
N = 54 (size)

gλ = 116528733315142075200
= 26 · 3 · 52 · 7 · 132 · 172 · 19 · 23 · 37 · 41 · 43 · 47· 53

The largest prime factor is < N !!!
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Shifted Staircase (Classical)

Let δn := (n, n − 1, . . . , 1), a shifted staircase shape.

Corollary: (of Schur’s product formula for shifted shapes)

g δn = N! ·
n−1∏
i=0

i !

(2i + 1)!
,

where N := |δn| =
(n+1

2

)
.
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Truncated Shifted Staircase

The first example of a truncated shape:

Theorem: [A-King-Roichman ’11, Panova ’12] The number of SYT
of shape δn \ (1) is equal to

g δn
CnCn−2
2C2n−3

,

where Cn = 1
n+1

(2n
n

)
is the n-th Catalan number.
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Truncated Shifted Staircase
More generally, truncating a square from a shifted staircase shape:

[δ5 \ (22)] =

Theorem: [AKR] The number of SYT of truncated shifted
staircase shape δm+2k \ ((k − 1)k−1) is

g (m+k+1,...,m+3,m+1,...,1)g (m+k+1,...,m+3,m+1)· N!M!

(N −M − 1)!(2M + 1)!
,

where N =
(m+2k+1

2

)
− (k − 1)2 is the size of the shape and

M = k(2m + k + 3)/2− 1.

Similarly for truncating “almost squares” (kk−1, k − 1).
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Rectangle (Classical)

[(54)] =

Observation:
The number of SYT of rectangular shape (nm) is

f (n
m) = (mn)! · FmFn

Fm+n
,

where

Fm :=
m−1∏
i=0

i !.
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Truncated Rectangle

Truncate a rectangle by a (shifted) staircase.

[(54) \ δ2] =

Theorem: [Panova]
Let m ≥ n ≥ k be positive integers. The number of SYT of
truncated shape (nm) \ δk is(

N

m(n − k − 1)

)
f (n−k−1)

m
g (m,m−1,...,m−k)E (k + 1,m, n − k − 1)

E (k + 1,m, 0)
,

where N = mn−
(k+1

2

)
is the size of the shape and E (r , p, s) = . . ..
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Truncated Rectangle

Truncate a square from the NE corner of a rectangle:

[(54) \ (22)] =

Theorem: [AKR]
The number of SYT of truncated rectangular shape
((n + k)m+k) \ (kk) and size N is

N!(mk + m − 1)!(nk + n − 1)!(m + n)!

(mk + nk + m + n)!
· Fm−1Fn−1Fk

Fm+n+k
.

Similar results were obtained for truncation by almost squares.
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Truncated Rectangle

The following formula, for a slightly truncated square, was
conjectured by AKR and proved by Sun.

Theorem: [Sun ’15]
For n ≥ 2

f (n
n)\(2) =

(n2 − 2)!(3n − 4)!2 · 6
(6n − 8)!(2n − 2)!(n − 2)!2

·
F 2
n−2

F2n−4
.

The corresponding numbers for a truncated rectangle are not
smooth!

Theorem: [Snow]
For n ≥ 2 and k ≥ 0

f (n
k+1)\(n−2) =

(kn − k)!(kn + n)!

(kn + n − k)!
· FkFn
Fn+k

.
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Proof Ideas: Sun

A rectangle truncated by a shifted staircase:

First step:
#SYT = N! times the volume of the order polytope
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Interpretation 3: Order Polytope

The order polytope corresponding to a diagram D is

P(D) := {f : D → [0, 1] | c ≤D c ′ =⇒ f (c) ≤ f (c ′) (∀c , c ′ ∈ D)},

where ≤D is the natural partial order between the cells of D. It is
a closed convex subset of the unit cube [0, 1]D .

a b c

d e

f : {a, b, c , d , e} → [0, 1]
f (a) ≤ f (b) ≤ f (c)

f (d) ≤ f (e)
f (a) ≤ f (d)
f (b) ≤ f (e)

Observation:

volP(D) =
f D

|D|!
.
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Proof Ideas: Sun

• #SYT = N! times the volume of the order polytope;

• the volume is computed by an iterated integral,

• equal to the integral of a (nearly Vandermonde) determinant,

• equal to Fn−kFm−k/Fn+m−k times∫
· · ·
∫

0≤t1≤...≤tk≤1

k∏
i=1

tn−ki (1− ti )
m−k

∏
i<j

(tj − ti ) dt1 · · · dtk ,

• evaluated using Selberg’s integral formula as

k−1∏
j=0

Γ(n − k + 1 + j/2) Γ(m − k + 1 + j/2) Γ((j + 1)/2)

Γ(n + m − 2k + 2 + (k − 1 + j)/2)
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Shifted Strip

Theorem: [Sun]
The number of SYT of truncated shifted shape with n rows and 4
cells in each row is the (2n − 1)-st Pell number

1

2
√

2

(
(1 +

√
2)2n−1 − (1−

√
2)2n−1

)
.

There are extensions by Hason.
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Open Problems

• Which non-classical shapes have nice/product formulas?

• A modified hook length formula?

• A representation theoretical interpretation?
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Thank You!
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